
Table of Contents
Learn ezr² 2
C# and ezr² 11
Embedding ezr² 12
Get started with CSAELs 13
Multilingual ezr² 14



2 / 15

Learn ezr²
Why Learn ezr²?
ezr² is a programming language that's easy to learn and practical to use. ezr² can be learnt by anyone,
of any age, in a few minutes. Anyone can extend the functionalities of ezr² with libraries. If you already
know C#, you can even help in ezr² development with C# Assisted ezr² Libraries (CSAELs)! CSAELs
bring the existing functionality of C# to ezr²! Experienced ezr² programmers can even ditch the
boilerplate syntax for the shorter QuickSyntax. The normal syntax satisfies the beginner, as it is easy to
use and QuickSyntax satisfies the expert, as it is very short.

Documentation
Start coding with the help of ezr²'s official documentation! Read the text in bold for a TL;DR. (Heavily
inspired by this Python tutorial )

Hello World, Displaying Text to The Screen and Strings
There's a tradition in which programming tutorials start with a so-called Hello World program. A Hello
World program simply prints the words "Hello world" to the screen, and the show() function lets
you do that. You will learn more about functions later.

The show() function takes the value you put between the parentheses and prints it to the screen.
This value is known as the argument. When you want to show "Hello world" to the screen, what you're
displaying is text, and text in ezr² is always put between double quotes. In the world of computer
programming, this is called a string.

The double quotes around a string mark its the start and end. This way, a string is easy to recognize
for ezr². Here are a few more examples of valid strings:

Nothing
After printing anything to the screen, the show() function also displays "nothing". This means the
function show() returned no value, but printed the argument to the screen. If you write "Example"
and run, only "Example" will be shown to the screen. As in the expression "Example" returned the

show("Hello, World!")

"Hello world"
"My name is Uday"
"This one is a bit longer. There is no limit to how long a string can be!"

https://python.land/python-tutorial
https://python.land/python-tutorial
https://python.land/python-tutorial


3 / 15

string "Example". nothing is a representation of a "lack of value" - equivalent to null (C#, C, Java, etc)
or None (Python).

Numbers
Just like strings, you can ask ezr² to print numbers using the show() function. Unlike strings, numbers
don't need quotes around them. So, the code to print the number 10 would be:

Try some of these operators on numbers!

Operator Name Example

+ addition 2 + 6

- subtraction 8 - 4

* multiplication 3 * 23

/ division 6 / 2

% modulo 9 % 2

^ powered by 4 ^ 2

Floating-point Numbers
Try the expression 3 / 2. It returns 1 instead of the correct answer, 1.5. In computer programming,
there's a strong distinction between non-fractional numbers like 1, 3, and 42 and fractional
numbers like 3.14 and 5.323. The former are called integers - whole numbers, while the latter are
called floats - floating-point numbers. Now try this:

This should display 1.5 to the screen, because you have specified that 2.0 is a float. An integer divided
by another integer will always return an integer, but the same done with a float will always return
a float. This rule is the same for all operators.

Variables
What if you want to store the result of a calculation, to be accessed later in the code? For this, you use
variables. Variables allow you to store items in memory for as long as the ezr² program runs. It's

show(10)

show(3 / 2.0)



4 / 15

like a reservation for an item, under the variable name, in the system memory.

The syntax to assign a variable is so: NAME: VALUE. To assign the number 42 to a variable called age,
you would write:

And just like numbers and strings, you can print a variable with the show() function. In the following
example, you assign a few variables and then print them. Here you are also adding strings together -
this combines or concatenates the two strings. You have to convert the age variable to a string to be
able to add it to another string, so you use the built-in as_string function in the integer.

User Input
Let's make a simple adder - the user will enter two numbers, and the adder will return the result of
adding them together. To do so you need to get the user's input. You can use the get() function for
that. You have to feed it the message to show to the user. You can enter nothing if you don't want
any message with the input request.

The code should look something like this:

If you try the code, you will see that it's not adding the numbers, but concatenating them! As in, if you
enter 2 and 4 as num1 and num2 respectively, the result will be 24, not 6.

This is because the get() function returns a string. You need to convert the string into an integer. To
do so you use the built-in as_integer() function in the string. You'll immediately convert the results of
the get() functions to integers. Try the below code:

age: 42

age: 42
name: "Joe"

show("Hello, my name is " + name)
show("My age is " + age.as_string())

num1: get("Enter num 1: ")
num2: get("Enter num 2: ")

show(num1 + num2)

num1: get("Enter num 1: ").as_integer()
num2: get("Enter num 2: ").as_integer()



5 / 15

Conditions
Try entering normal text as the input for the above code - you'll get an error! This is because the
as_integer() function cannot convert normal text to integers. To avoid the user seeing the messy
error, you can use the try_as_integer() function. But, this function returns nothing if it is unable to
convert the string to an integer! If you try to add nothing and a number together you'll get an error!
You have to make sure that num1 and num2 are integers before you add them. You can do this with if
expressions. The if expression has a body of code that only executes whenever the if statement's
condition is met. The additional else statement, which also has a body of code, runs if the if
condition is false. The else if statement is used when you wish to satisfy one statement while the
other is false.

Here are all the comparison operators:

Operator Operation Example

= equal to "i" = "i", "i" = "j"

! not equal to "i" ! "i", "i" ! "j"

> greater than 5 > 8, 9 > 4

< less than 5 < 8, 9 < 4

>= greater than or equal to 5 >= 5, 5 >= 2, 5 >= 8

<= less than or equal to 5 <= 5, 5 <= 2, 5 <= 8

or and 3 = 2 and 2 > 1, 2 = 5 and 5 = 2, 2 = 2 and 2 > 1

show(num1 + num2)

num1: get("Enter num 1: ").try_as_integer()
num2: get("Enter num 2: ").try_as_integer()

if num1 = nothing do
show("Num 1 is invalid!")

else if num2 = nothing do
show("Num 2 is invalid!")

else do
show(num1 + num2)

end



6 / 15

Operator Operation Example

and or 3 = 2 or 2 > 1, 2 = 5 or 5 = 2, 2 = 2 or 2 > 1

If you use comparisons outside if expressions they will return a boolean. Booleans are just two
values - true or false.

One-liners
You might have noticed that the if expression has the end keyword at the end. All multi-line ezr²
expressions must end with the end keyword. But you can write most multi-line expressions in one
line - these are called one-liners. They are the same as writing the multi-line version of an expression,
but they must fit in a single line. For example -

Note that new lines can be coded as the semicolon (;) symbol. Comments are signified by the at
symbol (@) at the start. Comments are just more information about the written code - like how the
code works. They do not affect the execution of any code and are ignored by ezr².

Loops
For the above scripts, you might have found it annoying to have to copy and paste the code again and
again to try it out. What if you want the code to run forever? Or even a set number of times? Do you
have to keep copying and pasting it? No! You'll use loops for that. A loop keeps executing the given
body of code till a condition is satisfied. ezr² has two types of loops - count loops and while loops.

Count Loops
Count loops repeat the given code a set number of times.

The count loop can optionally keep account of the iteration variable. The iteration variable,
starting at zero, is the value that gets incremented each loop or iteration. The count loop checks if
the iteration variable is less than the max iterations - if not it stops the loop. Iteration variables are
useful if you want to iterate over a list or array, using the variable as the index.

if get("Hello there!\n") = "General Kenobi" do show("Nice")

count to 10 do
show("Hello, World!")

end

count to 10 as i do
show("The iteration variable, named 'i' is: " + i.as_string())



7 / 15

Now, what if you don't want the loop / iteration variable to start at zero? You can also set the start
of a count loop!

Lastly, what if you want the iteration variable to skip a few numbers? Say you only want even
numbers? You can set the step of the count loop! The step is what the loop adds to the iteration
variable every iteration.

While Loops
While loops repeat the given code till the given condition turns false, and revaluate the condition
every iteration.

While loops can also be used to run code infinitely!

Iteration Control
What if you want to stop a loop while it's running or want to skip an iteration on a condition? You can
use the stop and skip keywords to control the iterations of loops. The skip keyword stops the

end

count from -5 to 5 as i do
show("The iteration variable, named 'i' is: " + i.as_string())

end

count to 10 step 2 as i do
show("The iteration variable, named 'i' is: " + i.as_string())

end

count from 1 to 10 step 2 as i do
show("The iteration variable, named 'i' is: " + i.as_string())

end

password: get("Enter password: ")
while password ! "yeet" do

password: get("Password is false! Try again: ")
end

while true do
show("Hello, World!")

end



8 / 15

current iteration and starts the next. The stop keyword just stops the loop. Let's code a simple
example.

In this example, the iteration is skipped when i = 5 and the loop is outright stopped when i = 8. The skip
and stop keywords can also be used in while loops.

Arrays
If you try the one-liner version of the count loop, like -

You'll see a whole lot of nothing-s in parentheses, separated by commas! That's an array.

Arrays are used to store multiple items of any type in a single variable. It is ordered and
unchangeable, or immutable. When you say that arrays are ordered, it means that the items have a
defined order, and that order will not change. An array is created by putting items, seperated by
commas, between parenthesis. Array items are indexed, the first item has index 0, the second item
has index 1 and so on. Items of an array can be accessed with the < operator -

count to 10 as i do
if i = 5 do

skip
end

if i = 8 do
stop

end

show("I = " + i.as_string())
end

count to 10 do show("Hi!")

array_example: (1, "string", 3.54, nothing, false)
show(array_example < 0)
show(array_example < 1)
show(array_example < 2)
show(array_example < 3)
show(array_example < 4)

show(array_example < "sd")



9 / 15

That last line of code should show an error - the item after the < operator must be a valid index in
the array!

Here are all the array operators:

Operator Name Example

* duplication (2,3) * 4

/ division (6,2,3,4) / 2

< item access (6,2) < 1

Now, what if you want to create an array with one item? Let's try it -

This won't work, as ezr² thinks (3) is part of an operation - not an array. So, you have to have a
comma after the first item!

You can access the length of the array with the built-in length variable in array -

Lists
Lists are like arrays, but they are changeable or mutable. They are created with square brackets,
instead of parentheses.

Here are all the list operators:

array_example: (3)
show(array_example)

array_example: (3,)
show(array_example)

array_example: (1,2,3,4)
show(array_example.length)

list_example: [1,"string",1.45,nothing,true]
show(list_example)



10 / 15

Operator Name Example

+ append lst: [1,5]; lst + 4

- remove lst: [1,5]; lst - 1

* duplication [2,3] * 4

/ division [6,2,3,4] / 2

< item access [6,2] < 1

You can access the length of the list with the built-in length variable in the list, just like with arrays.

TODO: Dictionaries, Globalization of Variables, Functions, Objects and Classes, Special Functions, Built-
ins, Modules, IO and STD Libraries, QuickSyntax



11 / 15

C# and ezr²
Embedding ezr² to your application!
ezr² can be embedded into other programs. This allows your users to write scripts in ezr² which can
control various systems in your app. ezr² code is much simple and easier to learn and understand than,
for example, C# code.

To learn more about embedding ezr² into your application, check the documentation here

ezr² doesn't have [feature] built-in!
Now, this is where CSAELs step in. CSAELs, or, CSharp Assisted ezr² Libraries are libraries written in C#
for ezr² scripting.

With CSAELs, anyone who knows C# can add any feature they want to ezr². These features can also be
built-in to ezr² - it's a win-win situation! All you have to do is wrap C# variables, functions and whatnot
with attributes the ezr² interpreter can identify. All these "wrapper" attributes are part of the ezr² API.

To learn more about CSAELs, check the documentation here



12 / 15

TODO



13 / 15

TODO



14 / 15

Multilingual ezr²
Why?
Most programming languages like C, C#, Python, and Java, just to name a few, are English-based. Of
course, they do not follow the standard grammar for natural English, but, you would agree that it would
be much easier to learn these languages if you knew English. This can be a huge barrier to those who
have never spoken a single word of English.

How's it different from other multilingual (programming)
languages?
There are a few examples of programming languages which may not require you to know English:

Scratch Jr.
This is a programming language that is based on symbols and pictures. How far can you go with
pictures?

Now, you can have language made up completely of symbols, Sign Language is a good example. But
then, the user is forced learning a different language. Why not just learn English at that point and do
conventional coding?

Hedy

Hedy is a transpiler - something that converts Hedy code to Python code, and executes it. There is no
method in which the Python code can be converted back to Hedy code in the way Hedy code is
converted into Python code. Why is this important?

Well, let's assume the role of Programmer A. They have made a project which is written in French Hedy
code. They are satisfied with the project and publish it on GitHub.

Here comes Programmer B, who likes A's project and downloads it, uses it and loves it. But, they have
found a few bugs in the code! Sadly, they cannot fix the code as it is written in French Hedy, and they
only know Hindi Hedy.

As you can see, the language barrier has prevented the potential collaboration between two
programmers.

So how is it different?
Imagine a programming language, which:

Can be written in one natural language syntax;
Can be published in a natural-language-neutral intermediate syntax (QuickSyntax);

https://www.scratchjr.org/
https://www.scratchjr.org/
https://www.scratchjr.org/
https://www.hedy.org/
https://www.hedy.org/
https://www.hedy.org/


15 / 15

Can be converted back to another natural language syntax; And,
Can be converted to QuickSyntax again to publish!

This means the natural language barrier is completely and utterly shattered! Yeah!

How?
Well, this is still in a planning stage, but the structure should look like this:

The Syntax Checkers
This includes the Lexer and Parser. There will be custom versions of these for each language, so that the
translations are perfect.

The Converter
This converts the Parsed nodes from/into QuickSyntax or serialized binaries.

The Interpreter
The interpreter only interprets nodes that have been given to it. It does not know which language the
source code is in.

Of course, this is quite a high-level summary, and, again, this is only in the planning stage.


	Learn ezr²
	C# and ezr²
	Embedding ezr²
	Get started with CSAELs
	Multilingual ezr²

